Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction: Difference between revisions

From ChemWiki
Line 295: Line 295:
M  V30 45 10 1 37
M  V30 45 10 1 37
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform><chemform smiles="NC1C=C2[N+](=C3C(=CC2=CC=1)C=CC(N)=C3)C" inchi="1S/C14H13N3/c1-17-13-7-11(15)4-2-9(13)6-10-3-5-12(16)8-14(10)17/h2-8H,1H3,(H3,15,16)/p+1" inchikey="XSIOKTWDEOJMGG-UHFFFAOYSA-O" height="200px" width="300px" float="none">
  -INDIGO-11172411382D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 17 19 0 0 0
M  V30 BEGIN ATOM
M  V30 1 N -2.59808 -0.5 0.0 0
M  V30 2 C -1.73205 0.0 0.0 0
M  V30 3 C -1.73205 1.0 0.0 0
M  V30 4 C -0.866025 1.5 0.0 0
M  V30 5 C 0.0 1.0 0.0 0
M  V30 6 C 0.0 0.0 0.0 0
M  V30 7 N 0.866026 -0.5 0.0 0 CHG=1
M  V30 8 C 0.866025 -1.5 0.0 0
M  V30 9 C 1.73205 0.0 0.0 0
M  V30 10 C 2.59808 -0.5 0.0 0
M  V30 11 C 3.4641 0.0 0.0 0
M  V30 12 N 4.33013 -0.5 0.0 0
M  V30 13 C 3.4641 1 0.0 0
M  V30 14 C 2.59808 1.5 0.0 0
M  V30 15 C 1.73205 1 0.0 0
M  V30 16 C 0.866026 1.5 0.0 0
M  V30 17 C -0.866025 -0.5 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 1 1 2
M  V30 2 2 2 3
M  V30 3 1 3 4
M  V30 4 2 4 5
M  V30 5 1 5 6
M  V30 6 1 6 7
M  V30 7 1 7 8
M  V30 8 2 7 9
M  V30 9 1 9 10
M  V30 10 2 10 11
M  V30 11 1 11 12
M  V30 12 1 11 13
M  V30 13 2 13 14
M  V30 14 1 9 15
M  V30 15 1 15 14
M  V30 16 2 15 16
M  V30 17 1 16 5
M  V30 18 2 6 17
M  V30 19 1 17 2
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform>  <chemform smiles="[Ir+]1(N2C=C(C=CC=2C2=C(F)C=C(F)C=C21)C(F)(F)F)1(C2C=C(F)C=C(F)C=2C2N1=CC(=CC=2)C(F)(F)F)1N2C=CC(C(C)(C)C)=CC=2C2=CC(C(C)(C)C)=CC=N21" inchi="1S/C18H24N2.2C12H5F5N.Ir/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*13-8-2-3-9(10(14)5-8)11-4-1-7(6-18-11)12(15,16)17;/h7-12H,1-6H3;2*1-2,4-6H;/q;;;+1" inchikey="OZUQNBMGKZFLJQ-UHFFFAOYSA-N" height="200px" width="300px" float="none">
  -INDIGO-11172411402D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 57 65 2 0 0
M  V30 BEGIN ATOM
M  V30 1 Ir -0.352408 -0.02048 0.0 0 CHG=1
M  V30 2 C -3.22713 1.53262 0.0 0
M  V30 3 C -3.23259 0.70764 0.0 0
M  V30 4 C -2.52086 0.290423 0.0 0
M  V30 5 C -1.80368 0.698189 0.0 0
M  V30 6 C -1.79822 1.52317 0.0 0
M  V30 7 C -2.50995 1.94039 0.0 0
M  V30 8 C -1.08104 1.93094 0.0 0
M  V30 9 N -0.369308 1.51372 0.0 0
M  V30 10 C 0.347875 1.92148 0.0 0
M  V30 11 C 0.353331 2.74647 0.0 0
M  V30 12 C -0.358395 3.16368 0.0 0
M  V30 13 C -1.07558 2.75592 0.0 0
M  V30 14 C 2.50507 1.62732 0.0 0
M  V30 15 C 1.78864 2.03641 0.0 0
M  V30 16 C 1.07615 1.62049 0.0 0
M  V30 17 N 1.08009 0.795504 0.0 0
M  V30 18 C 1.79652 0.386423 0.0 0
M  V30 19 C 2.50901 0.802334 0.0 0
M  V30 20 C 1.80047 -0.438567 0.0 0
M  V30 21 N 1.08798 -0.854477 0.0 0
M  V30 22 C 1.09192 -1.67947 0.0 0
M  V30 23 C 1.80835 -2.08855 0.0 0
M  V30 24 C 2.52084 -1.67264 0.0 0
M  V30 25 C 2.5169 -0.847647 0.0 0
M  V30 26 C -2.47922 -0.244491 0.0 0
M  V30 27 C -3.19695 -0.65131 0.0 0
M  V30 28 C -3.20349 -1.47628 0.0 0
M  V30 29 C -2.49231 -1.89444 0.0 0
M  V30 30 C -1.77459 -1.48762 0.0 0
M  V30 31 C -1.76805 -0.662645 0.0 0
M  V30 32 C -1.06342 -1.90577 0.0 0
M  V30 33 C -1.06996 -2.73075 0.0 0
M  V30 34 C -0.358784 -3.1489 0.0 0
M  V30 35 C 0.358936 -2.74208 0.0 0
M  V30 36 C 0.365481 -1.91711 0.0 0
M  V30 37 N -0.345696 -1.49895 0.0 0
M  V30 38 C 3.21756 2.04324 0.0 0
M  V30 39 C 3.23728 -2.08172 0.0 0
M  V30 40 F -2.50449 2.76537 0.0 0
M  V30 41 F -3.94977 0.299875 0.0 0
M  V30 42 F -3.90812 -0.233155 0.0 0
M  V30 43 F -2.49886 -2.71941 0.0 0
M  V30 44 C 3.21362 2.86823 0.0 0
M  V30 45 C 3.934 1.63416 0.0 0
M  V30 46 C 3.93005 2.45915 0.0 0
M  V30 47 C 3.24122 -2.90671 0.0 0
M  V30 48 C 3.94977 -1.66581 0.0 0
M  V30 49 C 3.23334 -1.25673 0.0 0
M  V30 50 C 1.07052 3.15423 0.0 0
M  V30 51 F 1.47828 2.43705 0.0 0
M  V30 52 F 1.7877 3.562 0.0 0
M  V30 53 F 0.66275 3.87141 0.0 0
M  V30 54 C 1.07011 -3.16024 0.0 0
M  V30 55 F 0.651958 -3.87141 0.0 0
M  V30 56 F 1.78129 -3.57839 0.0 0
M  V30 57 F 1.48827 -2.44906 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 1 50 51
M  V30 2 1 50 52
M  V30 3 1 50 53
M  V30 4 1 11 50
M  V30 5 1 54 55
M  V30 6 1 54 56
M  V30 7 1 54 57
M  V30 8 1 35 54
M  V30 9 2 2 3
M  V30 10 1 3 4
M  V30 11 2 4 5
M  V30 12 1 5 6
M  V30 13 2 6 7
M  V30 14 1 7 2
M  V30 15 1 6 8
M  V30 16 2 8 9
M  V30 17 1 9 10
M  V30 18 2 10 11
M  V30 19 1 11 12
M  V30 20 2 12 13
M  V30 21 1 13 8
M  V30 22 2 14 15
M  V30 23 1 15 16
M  V30 24 2 16 17
M  V30 25 1 17 18
M  V30 26 2 18 19
M  V30 27 1 19 14
M  V30 28 1 18 20
M  V30 29 2 20 21
M  V30 30 1 21 22
M  V30 31 2 22 23
M  V30 32 1 23 24
M  V30 33 2 24 25
M  V30 34 1 25 20
M  V30 35 2 26 27
M  V30 36 1 27 28
M  V30 37 2 28 29
M  V30 38 1 29 30
M  V30 39 2 30 31
M  V30 40 1 31 26
M  V30 41 1 30 32
M  V30 42 2 32 33
M  V30 43 1 33 34
M  V30 44 2 34 35
M  V30 45 1 35 36
M  V30 46 2 36 37
M  V30 47 1 37 32
M  V30 48 10 17 1
M  V30 49 10 21 1
M  V30 50 10 37 1
M  V30 51 1 31 1
M  V30 52 1 14 38
M  V30 53 1 24 39
M  V30 54 1 7 40
M  V30 55 1 3 41
M  V30 56 1 27 42
M  V30 57 1 29 43
M  V30 58 1 38 44
M  V30 59 1 38 45
M  V30 60 1 38 46
M  V30 61 1 39 47
M  V30 62 1 39 48
M  V30 63 1 39 49
M  V30 64 1 5 1
M  V30 65 10 9 1
M  V30 END BOND
M  V30 BEGIN SGROUP
M  V30 1 SUP 1 ATOMS=(4 50 51 52 53) BRKXYZ=(9 0.000000 0.000000 0.000000 0.0-
M  V30 00000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000-
M  V30  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000-
M  V30 00) LABEL=CF3
M  V30 2 SUP 2 ATOMS=(4 54 55 56 57) BRKXYZ=(9 0.000000 0.000000 0.000000 0.0-
M  V30 00000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000-
M  V30  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000-
M  V30 00) LABEL=CF3
M  V30 END SGROUP
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END

Revision as of 11:40, 17 November 2024


Abstract

Summary

A photochemical reduction of CO2 to CO was shown using an Fe2+ and Co2+ complexes as catalysts in combination with Ruxx as photosensitizer.

metal−ligand exchange coupling as an example of charge delocalization that can determine the efficiency for photocatalytic CO2RR. A comparative evaluation of iron and cobalt complexes supported by the redox-active ligand tpyPY2Me establishes that the two-electron reduction of [Co(tpyPY2Me)]2+ ([Co]2+) occurs at potentials 770 mV more negative than the [Fe(tpyPY2Me)]2+ ([Fe]2+) analogue by maximizing the exchange coupling in the latter compound.

Advances and special progress

Additional remarks

Content of the published article in detail

Catalysts tested in this study

100968 100969

Photosensitizer

Ru(bpy)3 3,6-Diamino-10-methylacridinium 100971

Investigation

Experiment 'Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Comparison of Fe and Co complexes' does not exist.

Further Information

The Supporting Information gives quantum yields for described experiments in Table 1.

Sacrificial electron donor

In this study, the experiments were done with the sacrificial electron donor BIH (100508).

Additives

Investigations

Tags

TagContains tags that describe the content of the page.: photocatalytic CO2 reduction (Ontology: voc4cat, OBOID: voc4cat:0000099), TagContains tags that describe the content of the page.: CO