Product Control in Visible-Light-Driven CO2 Reduction by Switching Metal Centers of Binuclear Catalysts: Difference between revisions

From ChemWiki
No edit summary
No edit summary
 
Line 143: Line 143:
   9 25 10  0        0
   9 25 10  0        0
M  CHG  1  7  1
M  CHG  1  7  1
M  END
</chemform><chemform smiles="C1C(C)=CC2CN34[Cu]5([O+](C)(C)[Cu]678N9C(=CC=CC=9)CN6(CC6N7=CC=CC=6)CC=1C=2[S+]85)(N1C=CC=CC=1C3)N1C=CC=CC=1C4" inchi="1S/C33H33N6S.C2H6O.2Cu/c1-26-18-27(20-38(22-29-10-2-6-14-34-29)23-30-11-3-7-15-35-30)33(40)28(19-26)21-39(24-31-12-4-8-16-36-31)25-32-13-5-9-17-37-32;1-3-2;;/h2-19H,20-25H2,1H3;1-2H3;;/q+1;;;/p+1" inchikey="SEVSMRKEZLWNGA-UHFFFAOYSA-O" height="200px" width="300px" float="none" margin="0px 0px 0px 0px">
  -INDIGO-04092516412D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 45 56 0 0 0
M  V30 BEGIN ATOM
M  V30 1 C -0.7145 1.0312 0.0 0
M  V30 2 C -0.7145 0.2062 0.0 0
M  V30 3 C 0.0 -0.2063 0.0 0
M  V30 4 C 0.7145 0.2062 0.0 0
M  V30 5 C 0.7145 1.0312 0.0 0
M  V30 6 C 0.0 1.4437 0.0 0
M  V30 7 S 0.0 -1.0313 0.0 0 CHG=1
M  V30 8 Cu -0.7969 -1.2448 0.0 0
M  V30 9 Cu 0.7969 -1.2448 0.0 0
M  V30 10 C 1.4289 -0.2063 0.0 0
M  V30 11 C -1.4289 -0.2063 0.0 0
M  V30 12 N 2.1434 0.2062 0.0 0
M  V30 13 N -2.1434 0.2062 0.0 0
M  V30 14 C -2.1434 1.0312 0.0 0
M  V30 15 C -2.8579 -0.2063 0.0 0
M  V30 16 C -2.8579 1.4437 0.0 0
M  V30 17 C -2.8579 2.2687 0.0 0
M  V30 18 C -3.5724 2.6812 0.0 0
M  V30 19 C -4.2868 2.2687 0.0 0
M  V30 20 C -4.2868 1.4437 0.0 0
M  V30 21 N -3.5724 1.0313 0.0 0
M  V30 22 C 2.1434 1.0312 0.0 0
M  V30 23 C 2.8579 -0.2063 0.0 0
M  V30 24 C 2.8579 1.4437 0.0 0
M  V30 25 N 3.5724 1.0312 0.0 0
M  V30 26 C 4.2868 1.4437 0.0 0
M  V30 27 C 4.2868 2.2687 0.0 0
M  V30 28 C 3.5724 2.6813 0.0 0
M  V30 29 C 2.8579 2.2687 0.0 0
M  V30 30 C 0.0 2.2687 0.0 0
M  V30 31 C -2.8579 -1.0313 0.0 0
M  V30 32 C 2.8579 -1.0313 0.0 0
M  V30 33 C -3.5724 -1.4438 0.0 0
M  V30 34 C -3.5724 -2.2688 0.0 0
M  V30 35 C -2.8579 -2.6813 0.0 0
M  V30 36 C -2.1434 -2.2688 0.0 0
M  V30 37 N -2.1434 -1.4438 0.0 0
M  V30 38 N 2.1434 -1.4438 0.0 0
M  V30 39 C 2.1434 -2.2688 0.0 0
M  V30 40 C 2.8579 -2.6813 0.0 0
M  V30 41 C 3.5724 -2.2688 0.0 0
M  V30 42 C 3.5724 -1.4438 0.0 0
M  V30 43 O 0.0578 -1.7852 0.0 0 CHG=1
M  V30 44 C -0.5256 -2.3685 0.0 0
M  V30 45 C 0.6412 -2.3685 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 2 1 2
M  V30 2 1 2 3
M  V30 3 2 3 4
M  V30 4 1 4 5
M  V30 5 2 5 6
M  V30 6 1 6 1
M  V30 7 1 3 7
M  V30 8 1 7 8
M  V30 9 1 7 9
M  V30 10 1 4 10
M  V30 11 1 2 11
M  V30 12 1 10 12
M  V30 13 1 11 13
M  V30 14 1 13 14
M  V30 15 1 13 15
M  V30 16 1 14 16
M  V30 17 2 16 17
M  V30 18 1 17 18
M  V30 19 2 18 19
M  V30 20 1 19 20
M  V30 21 2 20 21
M  V30 22 1 21 16
M  V30 23 1 12 22
M  V30 24 1 12 23
M  V30 25 1 22 24
M  V30 26 2 24 25
M  V30 27 1 25 26
M  V30 28 2 26 27
M  V30 29 1 27 28
M  V30 30 2 28 29
M  V30 31 1 29 24
M  V30 32 1 6 30
M  V30 33 1 15 31
M  V30 34 1 23 32
M  V30 35 2 31 33
M  V30 36 1 33 34
M  V30 37 2 34 35
M  V30 38 1 35 36
M  V30 39 2 36 37
M  V30 40 1 37 31
M  V30 41 2 32 38
M  V30 42 1 38 39
M  V30 43 2 39 40
M  V30 44 1 40 41
M  V30 45 2 41 42
M  V30 46 1 42 32
M  V30 47 10 8 37
M  V30 48 10 8 13
M  V30 49 10 8 21
M  V30 50 10 9 12
M  V30 51 10 9 38
M  V30 52 10 9 25
M  V30 53 1 8 43
M  V30 54 1 9 43
M  V30 55 1 43 44
M  V30 56 1 43 45
M  V30 END BOND
M  V30 END CTAB
M  END
M  END
</chemform>
</chemform>

Latest revision as of 16:43, 9 April 2025


Abstract[edit | edit source]

The paper presents a strategy to control product selectivity in visible-light-driven CO₂ reduction by switching the metal centers in binuclear molecular catalysts. Two catalysts were developed: Co₂(MeL-S)(OAc)₂ (CoCo) and Cu₂(MeL-S)(H₂O)₂·2H₂O (CuCu). CoCo selectively produces CO (96% selectivity, TON = 6188), while CuCu selectively forms HCOOH (98% selectivity, TON = 7540). The distinct selectivities are attributed to structural and electronic differences, particularly the presence of a 3-center-4-electron (3c-4e⁻) Cu···H···Cu bond in CuCu.

Summary[edit | edit source]

This study demonstrates that switching the metal centers in sulfur-bridged binuclear catalysts enables precise control over CO₂ reduction products under visible light. CoCo favors CO formation, while CuCu favors HCOOH production. The catalysts are stable in aqueous media and work efficiently with non-noble metals, offering a sustainable approach to CO₂ valorization. Mechanistic insights via DFT and spectroscopy validate the influence of metal identity on electron transfer pathways and product outcomes.

Additional Remarks[edit | edit source]

  • Both catalysts function in water-containing (CH₃CN/H₂O, 4/1) systems.
  • The study highlights the importance of metal–ligand cooperation and electronic structure in achieving product selectivity.
  • This approach mimics biological enzymes like CODH and FDH.
  • Photocatalytic efficiency is influenced not only by the metal center but also by the sacrificial electron donor and solvent environment.

Content of the Published Article in Detail[edit | edit source]

  • Introduction: Emphasizes challenges in selective CO₂ photoreduction and the potential of non-noble metal catalysts.
  • Catalyst Design: Two bioinspired binuclear complexes (CoCo and CuCu) were synthesized using a sulfur-bridged N₆S-type ligand.
  • Photocatalysis: Under visible light, CoCo converts CO₂ to CO with high selectivity, while CuCu yields HCOOH. Product selectivity is influenced by metal type.
  • Mechanism: DFT and experimental data show that CuCu promotes HCOOH via a 3c-4e⁻ bond facilitating hydride transfer; CoCo lacks this interaction due to a greater metal–metal distance.

Catalysts tested in this study[edit | edit source]

101021

  • CoCo: Co₂(MeL-S)(OAc)₂
    • Yields CO (TON = 6188, 96% selectivity)
  • CuCu: Cu₂(MeL-S)(H₂O)₂·2H₂O
    • Yields HCOOH (TON = 7540, 98% selectivity)

Photosensitizer[edit | edit source]

[Ru(phen)3][PF6]2

  • Ru(phen)₃₂ (Ru-PS)
  • In some experiments: [Ru(bpy)₃]Cl₂
  • Role: Transfers electrons upon light excitation to the catalyst.

Investigation[edit | edit source]

  • EPR, XPS, CV, DPV, and DFT used for electronic and structural analysis.
  • 13CO₂ isotope labeling confirmed CO and HCOOH originate from CO₂.
  • Control experiments proved the need for each component (light, PS, catalyst, CO₂, reductant).
  • Mechanism: CoCo goes via CO₂ coordination, while CuCu facilitates hydrogenation first, enabled by Cu···Cu proximity and electron delocalization.

Further Information[edit | edit source]

  • Catalysts are stable under reaction conditions for over 10 h.
  • Deactivation is primarily due to photosensitizer degradation.
  • Reaction can be restarted by adding fresh Ru-PS.
  • Linear relationship observed between catalyst concentration and HCOOH production for CuCu.

Sacrificial electron donor[edit | edit source]

  • CoCo: Best performance with TEOA (triethanolamine)
  • CuCu: Best performance with TEA (triethylamine)
  • Others tested: BINH, VCNa, but with lower efficiency.

Additives[edit | edit source]

  • CH₃COONa: Investigated for its influence on redox behavior.
  • Solvent system: CH₃CN/H₂O (4:1 v/v) optimized for activity.
  • Hg⁰ poisoning test: Confirmed molecular (not colloidal) catalysis.