Product Control in Visible-Light-Driven CO2 Reduction by Switching Metal Centers of Binuclear Catalysts: Difference between revisions

About |
---|
No edit summary |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
=== | ===Abstract=== | ||
The paper presents a strategy to control product selectivity in visible-light-driven CO₂ reduction by switching the metal centers in binuclear molecular catalysts. Two catalysts were developed: Co₂(MeL-S)(OAc)₂ (CoCo) and Cu₂(MeL-S)(H₂O)₂·2H₂O (CuCu). CoCo selectively produces CO (96% selectivity, TON = 6188), while CuCu selectively forms HCOOH (98% selectivity, TON = 7540). The distinct selectivities are attributed to structural and electronic differences, particularly the presence of a 3-center-4-electron (3c-4e⁻) Cu···H···Cu bond in CuCu. | |||
[[Category:Publication]] | |||
====Summary==== | ====Summary==== | ||
====Additional | This study demonstrates that switching the metal centers in sulfur-bridged binuclear catalysts enables precise control over CO₂ reduction products under visible light. CoCo favors CO formation, while CuCu favors HCOOH production. The catalysts are stable in aqueous media and work efficiently with non-noble metals, offering a sustainable approach to CO₂ valorization. Mechanistic insights via DFT and spectroscopy validate the influence of metal identity on electron transfer pathways and product outcomes. | ||
===Content of the | |||
====Additional Remarks==== | |||
* Both catalysts function in water-containing (CH₃CN/H₂O, 4/1) systems. | |||
* The study highlights the importance of metal–ligand cooperation and electronic structure in achieving product selectivity. | |||
* This approach mimics biological enzymes like CODH and FDH. | |||
* Photocatalytic efficiency is influenced not only by the metal center but also by the sacrificial electron donor and solvent environment. | |||
===Content of the Published Article in Detail=== | |||
* '''Introduction''': Emphasizes challenges in selective CO₂ photoreduction and the potential of non-noble metal catalysts. | |||
* '''Catalyst Design''': Two bioinspired binuclear complexes (CoCo and CuCu) were synthesized using a sulfur-bridged N₆S-type ligand. | |||
* '''Photocatalysis''': Under visible light, CoCo converts CO₂ to CO with high selectivity, while CuCu yields HCOOH. Product selectivity is influenced by metal type. | |||
* '''Mechanism''': DFT and experimental data show that CuCu promotes HCOOH via a 3c-4e⁻ bond facilitating hydride transfer; CoCo lacks this interaction due to a greater metal–metal distance. | |||
=== Catalysts tested in this study === | === Catalysts tested in this study === | ||
<chemform smiles="" inchi="" inchikey="" height="200px" width="300px" float="none" margin="0px 0px 0px 0px"> | |||
ChemDraw04092515402D | |||
50 62 0 0 0 0 0 0 0 0999 V2000 | |||
-0.7145 1.6237 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-0.7145 0.7987 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.0000 0.3862 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.7145 0.7987 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.7145 1.6237 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.0000 2.0362 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.0000 -0.4388 0.0000 S 0 3 0 0 0 0 0 0 0 0 0 0 | |||
-0.7969 -0.6523 0.0000 Co 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.7969 -0.6523 0.0000 Co 0 0 0 0 0 0 0 0 0 0 0 0 | |||
1.4289 0.3862 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-1.4289 0.3862 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.1434 0.7987 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.1434 0.7987 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.1434 1.6237 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.8579 0.3862 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.8579 2.0362 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.8579 2.8612 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-3.5724 3.2737 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-4.2868 2.8612 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-4.2868 2.0362 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-3.5724 1.6237 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.1434 1.6237 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.8579 0.3862 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.8579 2.0362 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
3.5724 1.6237 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 | |||
4.2868 2.0362 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
4.2868 2.8612 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
3.5724 3.2737 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.8579 2.8612 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.0000 2.8612 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.8579 -0.4388 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.8579 -0.4388 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-3.5724 -0.8513 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-3.5724 -1.6763 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.8579 -2.0888 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.1434 -1.6763 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-2.1434 -0.8513 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.1434 -0.8513 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.1434 -1.6763 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
2.8579 -2.0888 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
3.5724 -1.6763 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
3.5724 -0.8513 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-0.0752 -1.4743 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.6393 -1.8868 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
1.3537 -1.4743 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.6393 -2.7118 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-1.2703 -2.0362 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-0.5559 -2.4487 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
0.1586 -2.0362 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 | |||
-0.5559 -3.2737 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 | |||
1 2 2 0 0 | |||
2 3 1 0 0 | |||
3 4 2 0 0 | |||
4 5 1 0 0 | |||
5 6 2 0 0 | |||
6 1 1 0 0 | |||
3 7 1 0 0 | |||
7 8 1 0 0 | |||
7 9 1 0 0 | |||
4 10 1 0 0 | |||
2 11 1 0 0 | |||
10 12 1 0 0 | |||
11 13 1 0 0 | |||
13 14 1 0 0 | |||
13 15 1 0 0 | |||
14 16 1 0 0 | |||
16 17 2 0 0 | |||
17 18 1 0 0 | |||
18 19 2 0 0 | |||
19 20 1 0 0 | |||
20 21 2 0 0 | |||
21 16 1 0 0 | |||
12 22 1 0 0 | |||
12 23 1 0 0 | |||
22 24 1 0 0 | |||
24 25 2 0 0 | |||
25 26 1 0 0 | |||
26 27 2 0 0 | |||
27 28 1 0 0 | |||
28 29 2 0 0 | |||
29 24 1 0 0 | |||
6 30 1 0 0 | |||
15 31 1 0 0 | |||
23 32 1 0 0 | |||
31 33 2 0 0 | |||
33 34 1 0 0 | |||
34 35 2 0 0 | |||
35 36 1 0 0 | |||
36 37 2 0 0 | |||
37 31 1 0 0 | |||
32 38 2 0 0 | |||
38 39 1 0 0 | |||
39 40 2 0 0 | |||
40 41 1 0 0 | |||
41 42 2 0 0 | |||
42 32 1 0 0 | |||
43 44 4 0 0 | |||
44 45 4 0 0 | |||
44 46 1 0 0 | |||
8 43 1 0 0 | |||
9 45 1 0 0 | |||
47 48 4 0 0 | |||
48 49 4 0 0 | |||
48 50 1 0 0 | |||
8 47 1 0 0 | |||
9 49 1 0 0 | |||
8 37 10 0 0 | |||
8 13 10 0 0 | |||
8 21 10 0 0 | |||
9 12 10 0 0 | |||
9 38 10 0 0 | |||
9 25 10 0 0 | |||
M CHG 1 7 1 | |||
M END | |||
</chemform><chemform smiles="C1C(C)=CC2CN34[Cu]5([O+](C)(C)[Cu]678N9C(=CC=CC=9)CN6(CC6N7=CC=CC=6)CC=1C=2[S+]85)(N1C=CC=CC=1C3)N1C=CC=CC=1C4" inchi="1S/C33H33N6S.C2H6O.2Cu/c1-26-18-27(20-38(22-29-10-2-6-14-34-29)23-30-11-3-7-15-35-30)33(40)28(19-26)21-39(24-31-12-4-8-16-36-31)25-32-13-5-9-17-37-32;1-3-2;;/h2-19H,20-25H2,1H3;1-2H3;;/q+1;;;/p+1" inchikey="SEVSMRKEZLWNGA-UHFFFAOYSA-O" height="200px" width="300px" float="none" margin="0px 0px 0px 0px"> | |||
-INDIGO-04092516412D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 45 56 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C -0.7145 1.0312 0.0 0 | |||
M V30 2 C -0.7145 0.2062 0.0 0 | |||
M V30 3 C 0.0 -0.2063 0.0 0 | |||
M V30 4 C 0.7145 0.2062 0.0 0 | |||
M V30 5 C 0.7145 1.0312 0.0 0 | |||
M V30 6 C 0.0 1.4437 0.0 0 | |||
M V30 7 S 0.0 -1.0313 0.0 0 CHG=1 | |||
M V30 8 Cu -0.7969 -1.2448 0.0 0 | |||
M V30 9 Cu 0.7969 -1.2448 0.0 0 | |||
M V30 10 C 1.4289 -0.2063 0.0 0 | |||
M V30 11 C -1.4289 -0.2063 0.0 0 | |||
M V30 12 N 2.1434 0.2062 0.0 0 | |||
M V30 13 N -2.1434 0.2062 0.0 0 | |||
M V30 14 C -2.1434 1.0312 0.0 0 | |||
M V30 15 C -2.8579 -0.2063 0.0 0 | |||
M V30 16 C -2.8579 1.4437 0.0 0 | |||
M V30 17 C -2.8579 2.2687 0.0 0 | |||
M V30 18 C -3.5724 2.6812 0.0 0 | |||
M V30 19 C -4.2868 2.2687 0.0 0 | |||
M V30 20 C -4.2868 1.4437 0.0 0 | |||
M V30 21 N -3.5724 1.0313 0.0 0 | |||
M V30 22 C 2.1434 1.0312 0.0 0 | |||
M V30 23 C 2.8579 -0.2063 0.0 0 | |||
M V30 24 C 2.8579 1.4437 0.0 0 | |||
M V30 25 N 3.5724 1.0312 0.0 0 | |||
M V30 26 C 4.2868 1.4437 0.0 0 | |||
M V30 27 C 4.2868 2.2687 0.0 0 | |||
M V30 28 C 3.5724 2.6813 0.0 0 | |||
M V30 29 C 2.8579 2.2687 0.0 0 | |||
M V30 30 C 0.0 2.2687 0.0 0 | |||
M V30 31 C -2.8579 -1.0313 0.0 0 | |||
M V30 32 C 2.8579 -1.0313 0.0 0 | |||
M V30 33 C -3.5724 -1.4438 0.0 0 | |||
M V30 34 C -3.5724 -2.2688 0.0 0 | |||
M V30 35 C -2.8579 -2.6813 0.0 0 | |||
M V30 36 C -2.1434 -2.2688 0.0 0 | |||
M V30 37 N -2.1434 -1.4438 0.0 0 | |||
M V30 38 N 2.1434 -1.4438 0.0 0 | |||
M V30 39 C 2.1434 -2.2688 0.0 0 | |||
M V30 40 C 2.8579 -2.6813 0.0 0 | |||
M V30 41 C 3.5724 -2.2688 0.0 0 | |||
M V30 42 C 3.5724 -1.4438 0.0 0 | |||
M V30 43 O 0.0578 -1.7852 0.0 0 CHG=1 | |||
M V30 44 C -0.5256 -2.3685 0.0 0 | |||
M V30 45 C 0.6412 -2.3685 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 1 2 | |||
M V30 2 1 2 3 | |||
M V30 3 2 3 4 | |||
M V30 4 1 4 5 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 1 | |||
M V30 7 1 3 7 | |||
M V30 8 1 7 8 | |||
M V30 9 1 7 9 | |||
M V30 10 1 4 10 | |||
M V30 11 1 2 11 | |||
M V30 12 1 10 12 | |||
M V30 13 1 11 13 | |||
M V30 14 1 13 14 | |||
M V30 15 1 13 15 | |||
M V30 16 1 14 16 | |||
M V30 17 2 16 17 | |||
M V30 18 1 17 18 | |||
M V30 19 2 18 19 | |||
M V30 20 1 19 20 | |||
M V30 21 2 20 21 | |||
M V30 22 1 21 16 | |||
M V30 23 1 12 22 | |||
M V30 24 1 12 23 | |||
M V30 25 1 22 24 | |||
M V30 26 2 24 25 | |||
M V30 27 1 25 26 | |||
M V30 28 2 26 27 | |||
M V30 29 1 27 28 | |||
M V30 30 2 28 29 | |||
M V30 31 1 29 24 | |||
M V30 32 1 6 30 | |||
M V30 33 1 15 31 | |||
M V30 34 1 23 32 | |||
M V30 35 2 31 33 | |||
M V30 36 1 33 34 | |||
M V30 37 2 34 35 | |||
M V30 38 1 35 36 | |||
M V30 39 2 36 37 | |||
M V30 40 1 37 31 | |||
M V30 41 2 32 38 | |||
M V30 42 1 38 39 | |||
M V30 43 2 39 40 | |||
M V30 44 1 40 41 | |||
M V30 45 2 41 42 | |||
M V30 46 1 42 32 | |||
M V30 47 10 8 37 | |||
M V30 48 10 8 13 | |||
M V30 49 10 8 21 | |||
M V30 50 10 9 12 | |||
M V30 51 10 9 38 | |||
M V30 52 10 9 25 | |||
M V30 53 1 8 43 | |||
M V30 54 1 9 43 | |||
M V30 55 1 43 44 | |||
M V30 56 1 43 45 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform> | |||
* '''CoCo''': Co₂(MeL-S)(OAc)₂ | |||
** Yields CO (TON = 6188, 96% selectivity) | |||
* '''CuCu''': Cu₂(MeL-S)(H₂O)₂·2H₂O | |||
** Yields HCOOH (TON = 7540, 98% selectivity) | |||
====Photosensitizer==== | ====Photosensitizer==== | ||
<chemform smiles="C1=CC=N2[Ru+2]3(N4=CC=CC5C=CC6=C(C=54)N3=CC=C6)3(N4=CC=CC5C=CC6=C(C=54)N3=CC=C6)N3=CC=CC4C=CC1=C2C=43.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F" inchi="1S/3C12H8N2.2F6P.Ru/c3*1-3-9-5-6-10-4-2-8-14-12(10)11(9)13-7-1;2*1-7(2,3,4,5)6;/h3*1-8H;;;/q;;;2*-1;+2" inchikey="YRYUXGTVQZIGNQ-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | <chemform smiles="C1=CC=N2[Ru+2]3(N4=CC=CC5C=CC6=C(C=54)N3=CC=C6)3(N4=CC=CC5C=CC6=C(C=54)N3=CC=C6)N3=CC=CC4C=CC1=C2C=43.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F" inchi="1S/3C12H8N2.2F6P.Ru/c3*1-3-9-5-6-10-4-2-8-14-12(10)11(9)13-7-1;2*1-7(2,3,4,5)6;/h3*1-8H;;;/q;;;2*-1;+2" inchikey="YRYUXGTVQZIGNQ-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | ||
Line 146: | Line 401: | ||
M END | M END | ||
</chemform> | </chemform> | ||
* '''Ru(phen)₃₂''' (Ru-PS) | |||
* In some experiments: '''[Ru(bpy)₃]Cl₂''' | |||
* Role: Transfers electrons upon light excitation to the catalyst. | |||
====Investigation==== | ====Investigation==== | ||
* '''EPR, XPS, CV, DPV, and DFT''' used for electronic and structural analysis. | |||
* '''13CO₂ isotope labeling''' confirmed CO and HCOOH originate from CO₂. | |||
* '''Control experiments''' proved the need for each component (light, PS, catalyst, CO₂, reductant). | |||
* '''Mechanism''': CoCo goes via CO₂ coordination, while CuCu facilitates hydrogenation first, enabled by Cu···Cu proximity and electron delocalization. | |||
=== Further Information === | === Further Information === | ||
* '''Catalysts are stable''' under reaction conditions for over 10 h. | |||
* Deactivation is primarily due to photosensitizer degradation. | |||
* Reaction can be restarted by adding fresh Ru-PS. | |||
* Linear relationship observed between catalyst concentration and HCOOH production for CuCu. | |||
====Sacrificial electron donor==== | ====Sacrificial electron donor==== | ||
* '''CoCo''': Best performance with '''TEOA (triethanolamine)''' | |||
* '''CuCu''': Best performance with '''TEA (triethylamine)''' | |||
* Others tested: '''BINH, VCNa''', but with lower efficiency. | |||
====Additives==== | ====Additives==== | ||
* '''CH₃COONa''': Investigated for its influence on redox behavior. | |||
* '''Solvent system''': CH₃CN/H₂O (4:1 v/v) optimized for activity. | |||
* '''Hg⁰ poisoning test''': Confirmed molecular (not colloidal) catalysis. |
Latest revision as of 16:43, 9 April 2025
Abstract[edit | edit source]
The paper presents a strategy to control product selectivity in visible-light-driven CO₂ reduction by switching the metal centers in binuclear molecular catalysts. Two catalysts were developed: Co₂(MeL-S)(OAc)₂ (CoCo) and Cu₂(MeL-S)(H₂O)₂·2H₂O (CuCu). CoCo selectively produces CO (96% selectivity, TON = 6188), while CuCu selectively forms HCOOH (98% selectivity, TON = 7540). The distinct selectivities are attributed to structural and electronic differences, particularly the presence of a 3-center-4-electron (3c-4e⁻) Cu···H···Cu bond in CuCu.
Summary[edit | edit source]
This study demonstrates that switching the metal centers in sulfur-bridged binuclear catalysts enables precise control over CO₂ reduction products under visible light. CoCo favors CO formation, while CuCu favors HCOOH production. The catalysts are stable in aqueous media and work efficiently with non-noble metals, offering a sustainable approach to CO₂ valorization. Mechanistic insights via DFT and spectroscopy validate the influence of metal identity on electron transfer pathways and product outcomes.
Additional Remarks[edit | edit source]
- Both catalysts function in water-containing (CH₃CN/H₂O, 4/1) systems.
- The study highlights the importance of metal–ligand cooperation and electronic structure in achieving product selectivity.
- This approach mimics biological enzymes like CODH and FDH.
- Photocatalytic efficiency is influenced not only by the metal center but also by the sacrificial electron donor and solvent environment.
Content of the Published Article in Detail[edit | edit source]
- Introduction: Emphasizes challenges in selective CO₂ photoreduction and the potential of non-noble metal catalysts.
- Catalyst Design: Two bioinspired binuclear complexes (CoCo and CuCu) were synthesized using a sulfur-bridged N₆S-type ligand.
- Photocatalysis: Under visible light, CoCo converts CO₂ to CO with high selectivity, while CuCu yields HCOOH. Product selectivity is influenced by metal type.
- Mechanism: DFT and experimental data show that CuCu promotes HCOOH via a 3c-4e⁻ bond facilitating hydride transfer; CoCo lacks this interaction due to a greater metal–metal distance.
Catalysts tested in this study[edit | edit source]
- CoCo: Co₂(MeL-S)(OAc)₂
- Yields CO (TON = 6188, 96% selectivity)
- CuCu: Cu₂(MeL-S)(H₂O)₂·2H₂O
- Yields HCOOH (TON = 7540, 98% selectivity)
Photosensitizer[edit | edit source]
- Ru(phen)₃₂ (Ru-PS)
- In some experiments: [Ru(bpy)₃]Cl₂
- Role: Transfers electrons upon light excitation to the catalyst.
Investigation[edit | edit source]
- EPR, XPS, CV, DPV, and DFT used for electronic and structural analysis.
- 13CO₂ isotope labeling confirmed CO and HCOOH originate from CO₂.
- Control experiments proved the need for each component (light, PS, catalyst, CO₂, reductant).
- Mechanism: CoCo goes via CO₂ coordination, while CuCu facilitates hydrogenation first, enabled by Cu···Cu proximity and electron delocalization.
Further Information[edit | edit source]
- Catalysts are stable under reaction conditions for over 10 h.
- Deactivation is primarily due to photosensitizer degradation.
- Reaction can be restarted by adding fresh Ru-PS.
- Linear relationship observed between catalyst concentration and HCOOH production for CuCu.
Sacrificial electron donor[edit | edit source]
- CoCo: Best performance with TEOA (triethanolamine)
- CuCu: Best performance with TEA (triethylamine)
- Others tested: BINH, VCNa, but with lower efficiency.
Additives[edit | edit source]
- CH₃COONa: Investigated for its influence on redox behavior.
- Solvent system: CH₃CN/H₂O (4:1 v/v) optimized for activity.
- Hg⁰ poisoning test: Confirmed molecular (not colloidal) catalysis.